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In this paper we discover a generic structure in the eigenfunctions of quantum billiards, namely, scar-
ring by families of stable periodic orbits in a nonchaotic system. Our study is conducted on two different
triangular billiards, one an ergodic system and the other a “pseudointegrable” billiard. Surprisingly, we
detect scars in regions which contain no periodic orbits. The periodic orbits responsible for scarring re-
side in a “neighboring” triangle. Such orbits show a more complex phase space structure than the
“bouncing ball” trajectories of the stadium billiard. While diffuse nodal structure is usually the an-
tithesis of scarring, we show that in some eigenstates it is supported by extensive families of stable

periodic orbits.

PACS number(s): 05.45.+b, 03.65.Ge, 41.20.Bt

I. INTRODUCTION

The quantum mechanics of classically integrable sys-
tems is fairly well understood. Exact solutions to the
Schrodinger equation and fully developed semiclassical
approximations have been known for many years. Dur-
ing the past few decades, however, the “chaos revolu-
tion” of classical mechanics has exposed new dynamical
behavior which goes far beyond the simple integrability
of graduate level textbooks. Though a full understanding
of the quantum properties of classically chaotic systems is
not yet available, many fundamental discoveries have
nonetheless been made in the past years. For example,
common features have been discovered in the nearest
neighbor spacing distributions of energy levels for classi-
cally nonintegrable systems [1]. The semiclassical ap-
proach by Gutzwiller [2] has proved to be very successful
in showing the importance of classical periodic orbits for
determining the structure of the quantum spectrum.
However, understanding the characteristics of eigenfunc-
tions of generic systems has proven to be a much more
elusive task.

Quantum billiards are a particularly rewarding para-
digm for the investigation of the properties of the eigen-
functions for many reasons: the numerical solution to the
two-dimensional Schrodinger equation for a free particle
with Dirichlet boundary conditions is a relatively easy
task [3-5]. Moreover, billiards contain a cornucopia of
diverse classical motions, offering the opportunity to
study the quantum eigenstates of many classical regimes.
Finally, billiards are especially suited to a visually
effective display of the eigenfunctions.

For many years the phase space representation (via ei-
ther the Wigner or the Husimi transform) of any eigen-
functions of a classically nonintegrable system has been
conjectured to be uniformly distributed on the classical
energy hypersurface of the system [6] corresponding to
the eigenvalue of that state. In quantum billiards, this
conjecture predicts eigenfunctions to be evenly spread in
configuration space. The first evidence of the fallacy in
this conjecture came with the diagonalization of the sta-
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dium billiard [7], a system known to be classically chaotic
[8]. There, classical periodic orbits were observed to play
a significant role in the shaping of the eigenfunctions.
Some eigenstates were seen to concentrate along isolated
periodic orbits. Heller [9] provided the first theoretical
interpretation of the phenomenon, which he dubbed
“scars.” Other eigenfunctions were seen to be localized
along families of very simple orbits (the so called “bounc-
ing ball” states) which shuttle back and forth between the
straight sides of the stadium. Their existence can be in-
terpreted in terms of the Born-Oppenheimer approxima-
tion [10]. Bouncing ball eigenstates were also observed in
the (7/3)-rhombus billiard [11]. Most recently, further
theoretical understanding of scars has come from semi-
classical calculations [12,13]. Berry [13] showed that
scars are best understood in the phase space of the sys-
tem, rather than its configuration space only. This phase
space approach by Berry was later extended to include
the case of billiards [14]. It is noteworthy that all the
mentioned theoretical arguments assume the orbit scar-
ring some eigenstate to be isolated: this is the typical
case in chaotic systems.

Triangular billiards are a special case of polygonal bil-
liards. Polygonal billiards can be either exactly integra-
ble (only in a few exceptional cases), or “pseudointegr-
able” (when their angles are rational multiples of ), or
ergodic (when their angles are irrational multiples of 7)
[15]. Polygonal billiards cannot be chaotic (they are A-
integrable systems [16]), and they do not have positive
Lyapunov exponents. They can support only stable or-
bits, with the negligible exception of those orbits that hit
the boundary next to some vertex of the polygon. The
quantal behavior of billiards is fascinating also; for exam-
ple, the eigenfunctions of polygonal billiards were recent-
ly investigated by Amar, Pauri, and Scotti [17,18]: these
authors discuss the cases in which such eigenfunctions
can or cannot be represented as superpositions of plane
waves. Their quantum mechanics has also been studied
experimentally [19].

In this paper we show an entirely unexpected feature of
the eigenstates of quantum billiards, namely, scarring by
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families of stable periodic orbits. Moreover, some of
these eigenstates turn out to be scarred by narrow fami-
lies of periodic orbits which do not exist in the billiard it-
self but only in some neighboring pseudointegrable trian-
gle. We call such trajectories, when embedded in the er-
godic billiard, ghosts of periodic orbits [20]; and we say
that two triangles are “neighbors” if they are geometri-
cally very similar. In this way an ergodic triangle can be
the neighbor of an integrable one. Interestingly, our
ghosts of periodic orbits are not dynamically acceptable
trajectories of the ergodic billiard. We show that the
ghosts scarring our states have a far more complicated
phase space structure than the simple orbits supporting
the bouncing ball states of the stadium. Some other
states are shaped by larger families of “actual” orbits, i.e.,
not ghosts. We present eigenfunctions whose scarred na-
ture is hidden in configuration space, but becomes evi-
dent in phase space. The phase space picture of the orbit
supporting the state is very simple. However, we do not
see any obvious link to states analogous to the bouncing
ball states of the stadium billiard. In particular, we can-
not identify the ‘“slow” and ‘“fast> variables needed for
the Born-Oppenheimer approximation. In both cases,
that is, ghosts and “actual” orbits, scars become evident
when the state is viewed in the phase space (via the
Husimi representation). We display our states in the
phase space which is most proper to billiards, namely, the
space of Birkhoff variables.

This paper is organized as follows: in the next section
we review the method we used for producing the “quan-
tum Poincaré section” of a given eigenfunction; in Sec.
IIT we discuss our results for the scarring by ghosts; in
Sec. IV we illustrate the scars produced by large families
of periodic orbits; we present our general conclusions in
Sec. V.

II. CLASSICAL AND QUANTUM
POINCARE SECTIONS

In this section we briefly review the Birkhoff variables
representation of the phase space of a billiard and explain
how the quantum-mechanical description of the system
can be embedded in it.

Leaving aside the wunnecessarily complicated
mathematical generalization involving concepts like
“geodesic flows on a compact Riemannian manifold,” a
classical billiard is a very simple system. It consists of a
free particle moving in a flat plane domain circumscribed
by some (piecewise smooth) boundary. When the particle
hits the boundary it is reflected according to the usual
law: angle of reflection equals angle of incidence. It is
apparent that the trajectory between two collision points
is just a straight line: it does not carry any interesting in-
formation. One can effectively describe the dynamics of
the billiard by keeping track only of the coordinate s of
the collision points (i.e., the curvilinear distance from
some reference point on the boundary) and the angle of
reflection off the boundary 6 (measured with respect to
the inward normal to the boundary at the collision point).
It is usual to normalize the length of the boundary to 1
and to use sinf as second coordinate. It is also customary
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to normalize the speed of the free particle to 1 so that
sin@ represents the local projection of the momentum of
the particle along the boundary. The boundary is a
closed curve, therefore s =0 and 1 are really the same
point. In the Birkhoff variables picture the phase space
of a billiard has the topology of a cylinder. It is easy to
see that the missing parts of the trajectory (i.e., straight
segments joining collision points) can be reconstructed
exactly from the information encoded in the phase space
just described. We see that in the case of classical bil-
liards the phase space and the Poincaré surface of section
coincide exactly if Birkhoff variables are employed.

One way to embed the quantum-mechanical solution of
the problem in the Birkhoff variables phase space has re-
cently appeared in the literature [21]. It consists of a
method to produce a “quantum Poincaré section” (from
now on to be denoted QPS) for each eigenstate of the sys-
tem. The phase space of polygonal billiards has a very
peculiar structure [22], and to the best of our knowledge
ours is the first application of the method to the case of
polygonal billiards. The Birkhoff variables describe just
the collisions with the boundary, however, a quantum bil-
liard is a Dirichlet problem and the wave function van-
ishes on the boundary of the billiard, i.e., on the classical
collision points. Yet one can formally expand the wave
function y(x,y) near the boundary in a first-order Taylor
series along the local inward normal to the boundary. In
practice, for each point s of the boundary one evaluates
the wave function on some interior point close to it. The
interior point is to be determined by moving away from
the boundary along the inward normal by a distance con-
siderably shorter than the de Broglie wavelength of the
eigenstate. In this way for each eigenstate ,(x,y) we ob-
tain a corresponding reduced wave function ¢, (s) defined
on the [0,1] interval. The Birkhoff variables, which pro-
vide the most natural phase space in the classical case,
describe the motion just in the proximity of the boundary
where the interesting dynamics take place; therefore the
reduced eigenfunction yields the most proper quantum-
mechanical phase space approach to the problem. A
two-dimensional phase space portrait of ¥,(s) can be ob-
tained by considering its Husimi transform,

Hy (s,0=(s,klP,0 17, (1

where |s,k) is a coherent state centered on s in
configuration space and on k=p/# in wave number
space. Its coordinate space representation is
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The dispersions in position and wave number are o /V2
and 1/V20, respectively. We must also consider the fact
that our reduced one-dimensional configuration space is
topologically equivalent to a circle. While this can be
formally done by introducing the notion of a “periodic
coherent state” [21], the same aim can be achieved more
simply by employing a “cut and paste” procedure. When
a tail of the Gaussian envelope of the coherent state falls
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beyond one of the limits of the [0,1] interval we simply
cut it and paste it back at the other end of the interval
(see Fig. 1). It is apparent that one can use truncated
Gaussian envelopes neglecting the infinite tails which
would not contribute significantly to the overlap integral.
Next we write k=k,k,, where k, is the wave number of a
given eigenstate and —1 <k, <1. The new variable «, is
the tangential component of the momentum along the
boundary and it is to be associated to the second Birkhoff
variable sinf, which has the same physical meaning. We
will plot the Husimi transform as a function of s and «,.
We just need to evaluate the following integral:

- 2
ﬂﬁn(s"‘z)= lfolds'(S’KtKn|s’>‘pn(s’) ’ 3)

where the coherent state is understood in its truncated-
tail version and with the “cut and paste” procedure de-
scribed above. In Eq. (3) the dispersion coefficient o
should be chosen so as to have symmetric dispersion:
Ak /2k,=As. The integration can be reduced to a pair of
one-dimensional real integrals. As can be seen from Fig.
1, even at high energies the reduced wave function ¥,(s)
does not oscillate rapidly and is fairly amenable to nu-
merical treatment. We also normalized the result so as to
make the maximal height of the QPS equal to 1. Finally,
it is worth noting that since we rescaled the length of the
perimeter to unity, every wave number calculated from a
billiard of different size must be properly rescaled accord-
ing to Weyl’s law [1]. This procedure was recently ap-
plied to the case of a smooth boundary billiard with
mixed phase space, in which islands of stability coexist
with chaotic regions [21]. The results showed good
agreement with the classical Poincareé surfaces of section.
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FIG. 1. The reduced function for the 875th state of triangle
C along with the Gaussian envelope of a coherent state illustrat-
ing the “cut and paste” procedure (see text).
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III. SCARRING BY GHOSTS

In the present section we introduce the triangular bil-
liards we investigated and display the results of our calcu-
lations.

We originally observed the existence of scarred states
in a triangle with angles which are irrational (within the
precision of the computer) multiples of 7. This “irration-
al” triangle, henceforth denoted triangle C, was obtained
by distorting one of the angles of an equilateral triangle
from 7 /3 to w/V 10, leaving the ratio of the height to the
basis untouched. This classical billiard is generally con-
jectured to be ergodic. We calculated the eigenstates of
triangle C using a quantization scheme which is described
in an earlier paper [5].

The 875th eigenstate was the first strongly scarred
eigenstate we observed. A contour plot of the probability
density is displayed in Fig. 2 along with one of the ghosts
of periodic orbits which belongs to the family scarring
the eigenstate. The eigenstate of Fig. 2 was expanded on
a truncated Hilbert space basis of 3000 orthonormal vec-
tors ordered in energy [S]. The components of the state
are plotted in Fig. 3. The reliability of the numerical re-
sult is remarkable: it is evident from this figure that very
high energy basis vectors do not contribute significantly
to the eigenstate, therefore a truncated basis does not in-
duce a large error in the calculation. In the small trian-
gle in the upper right corner of Fig. 2 we display the re-
gion of configuration space spanned by the family of
ghosts. Remarkably, the periodic orbit of Fig. 2 does not
reside in triangle C. After the discovery of the scar we
investigated many other energy ranges of the spectrum
and found that states showing essentially the same con-

FIG. 2. Contour plot of the modulus squared of the 875th
eigenfunction of triangle C along with a ghost of a periodic or-
bit. The scarred nature of the wave function is apparent. The
small triangle shows the region spanned by the family of period-
ic orbits.
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FIG. 3. Components a,, , of the scarred eigenstate along the
basis vectors considered. The contribution from high energy
basis vectors is negligible. This makes the numerical result reli-
able.

tour pattern as Fig. 2 are ubiquitous. We detected them
from energies corresponding approximately to the 400th
eigenstate up to energies close to the 1200th level; in that
interval they account for roughly 3% of the spectrum (in
a less systematic search, however, we also detected
scarred states at very low energy, namely, around the
40th eigenstate). The high energy scarred states seem to
show a slightly sharper localization both in configuration
space and in phase space (their phase space picture will
be illustrated below) than their low energy cousins. It is
worth remembering that in the case of billiards the
correspondence between scarred eigenstates and periodic
orbits is purely geometrical. In a classical billiard the
infinitely high walls corresponding to the reflecting
boundary imply that the trajectory of the particle is in-
dependent of its energy. This is why the speed of the par-
ticle can be freely normalized to one. As a consequence,
a single periodic orbit can scar many eigenstates of wide-
ly different energies.

The very existence of periodic orbits with a nontrivial
structure is doubtful in the case of irrational billiards.
This can be seen by considering the map under reflection
for the angle that a trajectory makes with a fixed refer-
ence direction [23].

¢’ =2a;,—¢, @)

where a; is the angle between the side upon which the
collision takes place and the reference direction. It is
easy to see that a sequence of n reflections will yield the

following map:
¢—>¢'=23 3 (—1)*la;+(—1)¢, (5)
i1

where [ is the order of the collision and the second sum-
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mation includes a term only if the /th collision is on the
Jjth side. The periodicity in the angle of the trajectory
(which, by the way, would not guarantee the existence of
a periodic orbit) is connected to the number-theoretical
properties of the angles of the polygon: the numbers
a;/m must be linearly dependent on the rationals.
Indeed, some alternative and improbable cases can also
happen. For some simple orbits (as we shall see later) it
can be that all the / summations in Eq. (5) vanish in-
dependently. Alternatively it can happen that the result
of the double summation in the same equation equals
2¢+2mr: this case would yield periodicity in the case n
is odd. For an even number of reflections (which is the
case for the periodic orbit of Fig. 2) the periodicity of the
angle does not depend on the initial angle but solely on
the pattern of collisions. In conclusion, it is evident that
the existence (or otherwise) of periodic orbits in irrational
billiards is not a trivial question.

After some discouraging numerical searches for at least
some closely recursive orbit localized in the region where
the wave function of Fig. 2 is peaked, we started looking
for periodic orbits in some triangle with angles in rational
ratio with 7 which approximates triangle C. The period-
ic orbit of Fig. 2 was immediately discovered in a “ration-
al” triangle, henceforth denoted “triangle D,” which was
obtained by a two-decimal-digit approximation of the an-
gles of triangle C. These two triangles are displayed in
Fig. 4. The angles at the basis of triangle D are

— 8
DTET (©)
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D 20" -

The phase space of a rational polygonal billiard is struc-
tured by invariant surfaces of high genus. One can easily
calculate [24] the genus of the invariant surface of trian-

Triangle C—
Triangle D---

FIG. 4. The two triangles considered: triangle C (solid line)
vs triangle D (dashed line). Notice that triangle D is slightly
larger.
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gle D to be g, =96. A system characterized by such a
phase space structure is called “pseudointegrable” [22].
A simple analysis shows that the ghost orbit is exactly
periodic in triangle D. Obviously, in correspondence of
this orbit there exist a whole family of periodic trajec-
tories sharing the same pattern of reflections. Their
branches are parallel to the ones of the orbit displayed in
Fig. 2. The initial conditions that lead to the orbits
which generate ghosts, when used in triangle C, yield tra-
jectories which stray rapidly from the region in which the
eigenfunction is scarred. These trajectories do so in a
time shorter than the period of the ghosts. The same
holds for other initial conditions in the phase space
neighborhood of the ones which generate the exact
periodic orbits of triangle D.

However, one does not have to rely solely on visual evi-
dence to implicate this family in the scarring of this
eigenfunction. The best evidence for the connection be-
tween this family and the scar in triangle C emerges from
the Birkhoff variable representation of the eigenstate. It
is easy to see that since all the trajectories of the family
share the same sequence of angles (but different collision
points), the Birkhoff variables picture of such a family
will consist of straight line segments parallel to the basis
of the cylinder. The result of the comparison between the
QPS of the eigenstate (thin contour lines) and the classi-
cal Poincaré section for the family of orbits (thick
straight segments) is displayed in Fig. 5. The match is
striking. It is noteworthy that more than 70% of the
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FIG. 5. Phase space representation of the scarred eigenstate
of Fig. 2. The straight segments are the phase space picture of
the family of ghosts scarring the state. The match between the
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FIG. 6. Three-dimensional version of the quantum Poincaré
section of Fig. 5. The dominant nature of the peaks is clearly
revealed by the three-dimensional display.

volume defined by the surface determining the QPS is ac-
tually enclosed in those regions which are bounded by the
contours plotted in Fig. 5. The dominance of such re-
gions can be well appreciated by viewing the three-
dimensional picture of the same QPS (Fig. 6). For com-
parison we show, in Fig. 7, the QPS of a typical wave
function uniformly spread in configuration space: the
stark difference from Fig. 5 is apparent. We observed
essentially the same features as in Fig. 5 in all the QPS’s
for the other scarred eigenstates. We also studied the
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FIG. 7. Quantum Poincaré section of a generic eigenfunction
of triangle C. The difference from the contour pattern of Fig. 5
is evident.
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FIG. 8. Contour plot of the 884th eigenfunction of triangle
D. A periodic orbit is also plotted. The scar is easily detectable.
Some minor structures are also present. However, they do not
influence significantly the quantum Poincaré section.

eigenstates of triangle D and, of course, we found some
states which are scarred along the same family of period-
ic orbits (Fig. 8). One can notice immediately that the
scar in triangle D is not as marked: other, minor, struc-
tures are present. However, its QPS shows the same
features as in Fig. 5, leading one to argue that the scar is
a “robust” feature of the eigenfunction and therefore can
resist some small perturbation of the boundary.

Another argument supporting the scarring by ghosts of
periodic orbits comes from the comparison of the ener-
gies of scarred eigenstates in triangles C and D. As it can
be appreciated from Fig. 4, triangle D is slightly larger
than triangle C. According to Weyl’s law this implies
that the nth energy level of triangle D must be approxi-
mately 1% smaller than the corresponding eigenvalue in
triangle C. Our results satisfy this requirement. Yet the
two eigenstates of Figs. 5 and 8 have approximately the
same energy: They differ by less than 0.2%. The same
holds for the other scarred eigenstates we observed. The
similarity both in the contour pattern and in the phase
space representation leaves little doubt that as triangle D
is slightly distorted into triangle C the eigenfunction of
Fig. 8 (i.e., the 884th eigenstate of triangle D) evolves into
the wave function of Fig. 5 (i.e., the 875th eigenstate of
triangle C). This evolution must be accompanied by mul-
tiple level crossings [25].

IV. SCARRING BY FAMILIES
OF PERIODIC ORBITS

Eigenstate scarring in triangular billiards is not only
due to ghosts: We also observed some states scarred
along large families of regular periodic orbits. In con-

trast to the case of ghosts, such exceptional families of or-
bits reside in the same billiard as the scarred eigenfunc-
tions themselves. Figures 9 and 10 display two sample
states for triangles C and D, respectively, along with a
representative of the family of periodic orbits that we be-
lieve is scarring the state. Many other states with a simi-
lar diffuse contour pattern and a similar phase space QPS
were also observed in many energy ranges. This diffuse
nodal structure in configuration space is ordinarily a sign
of the absence of scarring, yet scarring becomes obvious
once a phase space picture is produced. Both eigenstates
of Figs. 9 and 10 are scarred by “actual” periodic orbits
which exist in the domain proper to each eigenstate. In
Fig. 11 we show the QPS for the 862nd eigenstate of tri-
angle C. The result for triangle D is essentially the same,
since the structure of the periodic orbits is very similar.
The fraction of volume contained in the regions enclosed
by the contour lines displayed in the figure is approxi-
mately 90%.

Note that, in contrast to the ghosts from neighboring
triangles, we are now considering two different exact
periodic orbits, each of them existing in one of the trian-
gles. The periodicity in the angle of the trajectory under
the pattern of reflections can be easily checked analytical-
ly. It does not depend on the linear dependence on the
rationals of the angles of the billiard since now all the /
summations of Eq. (5) vanish independently. In order to
prove the periodicity in configuration space, we plotted
the distance between an initial point and a final point on
some side of the triangle as a function of the angle of the
orbit. The existence of a zero (which could be evaluated
numerically with great accuracy) was apparent. This im-
plies the existence of an exact periodic orbit.

The two states of Figs. 9 and 10 are obviously in

Key
— 1 —1.00
— 2 -0.50
— 38 +0.00
— 4
— 5

FIG. 9. Contour plot of the 862nd eigenstate of triangle C.
A periodic orbit belonging to the family which scars the state is
also plotted.
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FIG. 10. Contour plot of the 862nd eigenstate of triangle D.
A periodic orbit belonging to the family which scars the state is
also plotted.

correspondence with each other, in the sense that it is
reasonable to assume that under some continuous defor-
mation of, say, triangle D into triangle C, the state of Fig.
10 (an eigenstate of triangle D) must continuously trans-
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FIG. 11. Quantum Poincaré section for the same state as in
Fig. 9. The scarring by the family of periodic orbits is evident
(straight segments).

form into the state of Fig. 9, which is an eigenstate of tri-
angle C. The same correspondence was considered for
the states scarred by ghosts and their corresponding
states in triangle D. In the present case, the periodic or-
bits also continuously transform into new periodic orbits
of the new domain, without a significant change in their
phase space structure. As a consequence both eigenstates
are the 862nd state for their triangle; in contrast with the
case of scarring by ghosts their energies scale according
to Weyl’s law.

V. CONCLUSIONS

In the present paper we have shown strong evidence
for the existence of scarred eigenstates in nonchaotic bil-
liards.

All present theories of scars assume that the orbit scar-
ring a given eigenstate is isolated. Such is not the case
for the scars discussed in this paper. All the trajectories
scarring our eigenfunctions are stable and belong to fami-
lies of periodic orbits. Even though the influence of fami-
lies of parallel orbits on the shape of the wave functions
had already been detected in the stadium billiard, our or-
bits show a more complex phase space picture than the
bouncing ball orbits.

We have also shown that orbits which belong to some
neighboring domain can scar the eigenstates of a billiard.
We call such trajectories ghosts of periodic orbits. This
feature is peculiar to polygonal billiards and is due to
sudden changes in the nature of the classical motion
versus adiabatic changes in the quantum regime. This
quantum adiabaticity poses serious problems for the
definition of a precise quantum-classical correspondence
principle. An infinitesimal change in the angles of a po-
lygonal billiard is sufficient to destroy any invariant phase
space surface. It can be argued that, under some
infinitesimal perturbation of the boundary, the eigenfunc-
tion and eigenvalues of a billiard cannot change abruptly.
We have shown that this is indeed correct: under a
change of the order of 2% in the domain, the quantum
mechanics of the system is still strongly influenced by the
neighboring pseudointegrable billiard and by the compli-
cated structure of its phase space. However, it is clear
that the somewhat artificial nature of polygonal billiards
must be responsible for this discrepancy. It is certainly
true that in nature one never has completely impenetr-
able walls and infinitely sharp corners. The classical
motion is extremely sensitive to the question of the irra-
tionality of the angle of the polygon. However, such
questions are irrelevant in the quantum regime and, in a
way, also in a physical outlook on classical billiards [26].

The eigenstates studied in this paper are not the only
ones which contain some underlying classical structures.
We observed many other states, in both triangles C and
D, that are influenced by classical trajectories. Unfor-
tunately in triangular billiards it is not easy to find fami-
lies of periodic orbits which are both simple and confined
in a small region of configuration space. In the case at
hand the obvious resonances in the angles of triangle D
favor a proliferation of families of periodic orbits. This
makes the task of identifying the family responsible for
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scarring extremely difficult for cases in which the
geometry of the scar is not as favorable as in the ones
displayed in this paper.

The present paper raises many interesting questions.
Are the scars along ghosts of periodic orbits going to be
healed by the semiclassical limit? Are scars a robust
feature of the eigenfunction? What happens to a scar
along some unstable periodic orbit when the domain is
slightly perturbed? In our view the stadium billiard, as
the very birthplace of scars, would be the most proper

arena for such a study, and these studies are in progress
in our group.
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FIG. 6. Three-dimensional version of the quantum Poincaré
section of Fig. 5. The dominant nature of the peaks is clearly
revealed by the three-dimensional display.



